Files
qwt/doc/man/man3/QwtSplinePolynomial.3
2023-10-31 09:22:42 +01:00

286 lines
6.6 KiB
Groff

.TH "QwtSplinePolynomial" 3 "Sun Jul 18 2021" "Version 6.2.0" "Qwt User's Guide" \" -*- nroff -*-
.ad l
.nh
.SH NAME
QwtSplinePolynomial \- A cubic polynomial without constant term\&.
.SH SYNOPSIS
.br
.PP
.PP
\fC#include <qwt_spline_polynomial\&.h>\fP
.SS "Public Member Functions"
.in +1c
.ti -1c
.RI "\fBQwtSplinePolynomial\fP (double \fBc3\fP=0\&.0, double \fBc2\fP=0\&.0, double \fBc1\fP=0\&.0)"
.br
.RI "Constructor\&. "
.ti -1c
.RI "bool \fBoperator==\fP (const \fBQwtSplinePolynomial\fP &) const"
.br
.ti -1c
.RI "bool \fBoperator!=\fP (const \fBQwtSplinePolynomial\fP &) const"
.br
.ti -1c
.RI "double \fBvalueAt\fP (double x) const"
.br
.ti -1c
.RI "double \fBslopeAt\fP (double x) const"
.br
.ti -1c
.RI "double \fBcurvatureAt\fP (double x) const"
.br
.in -1c
.SS "Static Public Member Functions"
.in +1c
.ti -1c
.RI "static \fBQwtSplinePolynomial\fP \fBfromSlopes\fP (const QPointF &p1, double m1, const QPointF &p2, double m2)"
.br
.ti -1c
.RI "static \fBQwtSplinePolynomial\fP \fBfromSlopes\fP (double x, double y, double m1, double m2)"
.br
.ti -1c
.RI "static \fBQwtSplinePolynomial\fP \fBfromCurvatures\fP (const QPointF &p1, double cv1, const QPointF &p2, double cv2)"
.br
.ti -1c
.RI "static \fBQwtSplinePolynomial\fP \fBfromCurvatures\fP (double dx, double dy, double cv1, double cv2)"
.br
.in -1c
.SS "Public Attributes"
.in +1c
.ti -1c
.RI "double \fBc3\fP"
.br
.RI "coefficient of the cubic summand "
.ti -1c
.RI "double \fBc2\fP"
.br
.RI "coefficient of the quadratic summand "
.ti -1c
.RI "double \fBc1\fP"
.br
.RI "coefficient of the linear summand "
.in -1c
.SH "Detailed Description"
.PP
A cubic polynomial without constant term\&.
\fBQwtSplinePolynomial\fP is a 3rd degree polynomial of the form: y = c3 * + c2 * + c1 * x;
.PP
\fBQwtSplinePolynomial\fP is usually used in combination with polygon interpolation, where it is not necessary to store a constant term ( c0 ), as the translation is known from the corresponding polygon points\&.
.PP
\fBSee also\fP
.RS 4
\fBQwtSplineC1\fP
.RE
.PP
.PP
Definition at line 30 of file qwt_spline_polynomial\&.h\&.
.SH "Constructor & Destructor Documentation"
.PP
.SS "QwtSplinePolynomial::QwtSplinePolynomial (double a3 = \fC0\&.0\fP, double a2 = \fC0\&.0\fP, double a1 = \fC0\&.0\fP)\fC [inline]\fP"
.PP
Constructor\&.
.PP
\fBParameters\fP
.RS 4
\fIa3\fP Coefficient of the cubic summand
.br
\fIa2\fP Coefficient of the quadratic summand
.br
\fIa1\fP Coefficient of the linear summand
.RE
.PP
.PP
Definition at line 77 of file qwt_spline_polynomial\&.h\&.
.SH "Member Function Documentation"
.PP
.SS "double QwtSplinePolynomial::curvatureAt (double x) const\fC [inline]\fP"
Calculate the value of the second derivate of a polynomial for a given x
.PP
\fBParameters\fP
.RS 4
\fIx\fP Parameter
.RE
.PP
\fBReturns\fP
.RS 4
Curvature at x
.RE
.PP
.PP
Definition at line 130 of file qwt_spline_polynomial\&.h\&.
.SS "\fBQwtSplinePolynomial\fP QwtSplinePolynomial::fromCurvatures (const QPointF & p1, double cv1, const QPointF & p2, double cv2)\fC [inline]\fP, \fC [static]\fP"
Find the coefficients for the polynomial including 2 points with specific values for the 2nd derivates at these points\&.
.PP
\fBParameters\fP
.RS 4
\fIp1\fP First point
.br
\fIcv1\fP Value of the second derivate at p1
.br
\fIp2\fP Second point
.br
\fIcv2\fP Value of the second derivate at p2
.RE
.PP
\fBReturns\fP
.RS 4
Coefficients of the polynomials
.RE
.PP
\fBNote\fP
.RS 4
The missing constant term of the polynomial is p1\&.y()
.RE
.PP
.PP
Definition at line 185 of file qwt_spline_polynomial\&.h\&.
.SS "\fBQwtSplinePolynomial\fP QwtSplinePolynomial::fromCurvatures (double dx, double dy, double cv1, double cv2)\fC [inline]\fP, \fC [static]\fP"
Find the coefficients for the polynomial from the offset between 2 points and specific values for the 2nd derivates at these points\&.
.PP
\fBParameters\fP
.RS 4
\fIdx\fP X-offset
.br
\fIdy\fP Y-offset
.br
\fIcv1\fP Value of the second derivate at p1
.br
\fIcv2\fP Value of the second derivate at p2
.RE
.PP
\fBReturns\fP
.RS 4
Coefficients of the polynomials
.RE
.PP
.PP
Definition at line 202 of file qwt_spline_polynomial\&.h\&.
.SS "\fBQwtSplinePolynomial\fP QwtSplinePolynomial::fromSlopes (const QPointF & p1, double m1, const QPointF & p2, double m2)\fC [inline]\fP, \fC [static]\fP"
Find the coefficients for the polynomial including 2 points with specific values for the 1st derivates at these points\&.
.PP
\fBParameters\fP
.RS 4
\fIp1\fP First point
.br
\fIm1\fP Value of the first derivate at p1
.br
\fIp2\fP Second point
.br
\fIm2\fP Value of the first derivate at p2
.RE
.PP
\fBReturns\fP
.RS 4
Coefficients of the polynomials
.RE
.PP
\fBNote\fP
.RS 4
The missing constant term of the polynomial is p1\&.y()
.RE
.PP
.PP
Definition at line 147 of file qwt_spline_polynomial\&.h\&.
.SS "\fBQwtSplinePolynomial\fP QwtSplinePolynomial::fromSlopes (double dx, double dy, double m1, double m2)\fC [inline]\fP, \fC [static]\fP"
Find the coefficients for the polynomial from the offset between 2 points and specific values for the 1st derivates at these points\&.
.PP
\fBParameters\fP
.RS 4
\fIdx\fP X-offset
.br
\fIdy\fP Y-offset
.br
\fIm1\fP Value of the first derivate at p1
.br
\fIm2\fP Value of the first derivate at p2
.RE
.PP
\fBReturns\fP
.RS 4
Coefficients of the polynomials
.RE
.PP
.PP
Definition at line 164 of file qwt_spline_polynomial\&.h\&.
.SS "bool QwtSplinePolynomial::operator!= (const \fBQwtSplinePolynomial\fP & other) const\fC [inline]\fP"
.PP
\fBParameters\fP
.RS 4
\fIother\fP Other polynomial
.RE
.PP
\fBReturns\fP
.RS 4
true, when the polynomials have different coefficients
.RE
.PP
.PP
Definition at line 97 of file qwt_spline_polynomial\&.h\&.
.SS "bool QwtSplinePolynomial::operator== (const \fBQwtSplinePolynomial\fP & other) const\fC [inline]\fP"
.PP
\fBParameters\fP
.RS 4
\fIother\fP Other polynomial
.RE
.PP
\fBReturns\fP
.RS 4
true, when both polynomials have the same coefficients
.RE
.PP
.PP
Definition at line 88 of file qwt_spline_polynomial\&.h\&.
.SS "double QwtSplinePolynomial::slopeAt (double x) const\fC [inline]\fP"
Calculate the value of the first derivate of a polynomial for a given x
.PP
\fBParameters\fP
.RS 4
\fIx\fP Parameter
.RE
.PP
\fBReturns\fP
.RS 4
Slope at x
.RE
.PP
.PP
Definition at line 119 of file qwt_spline_polynomial\&.h\&.
.SS "double QwtSplinePolynomial::valueAt (double x) const\fC [inline]\fP"
Calculate the value of a polynomial for a given x
.PP
\fBParameters\fP
.RS 4
\fIx\fP Parameter
.RE
.PP
\fBReturns\fP
.RS 4
Value at x
.RE
.PP
.PP
Definition at line 108 of file qwt_spline_polynomial\&.h\&.
.SH "Author"
.PP
Generated automatically by Doxygen for Qwt User's Guide from the source code\&.