Add files from zip
This commit is contained in:
233
doc/man/man3/QwtSplineLocal.3
Normal file
233
doc/man/man3/QwtSplineLocal.3
Normal file
@@ -0,0 +1,233 @@
|
||||
.TH "QwtSplineLocal" 3 "Sun Jul 18 2021" "Version 6.2.0" "Qwt User's Guide" \" -*- nroff -*-
|
||||
.ad l
|
||||
.nh
|
||||
.SH NAME
|
||||
QwtSplineLocal \- A spline with C1 continuity\&.
|
||||
|
||||
.SH SYNOPSIS
|
||||
.br
|
||||
.PP
|
||||
.PP
|
||||
\fC#include <qwt_spline_local\&.h>\fP
|
||||
.PP
|
||||
Inherits \fBQwtSplineC1\fP\&.
|
||||
.SS "Public Types"
|
||||
|
||||
.in +1c
|
||||
.ti -1c
|
||||
.RI "enum \fBType\fP { \fBCardinal\fP, \fBParabolicBlending\fP, \fBAkima\fP, \fBPChip\fP }"
|
||||
.br
|
||||
.RI "Spline interpolation type\&. "
|
||||
.in -1c
|
||||
.SS "Public Member Functions"
|
||||
|
||||
.in +1c
|
||||
.ti -1c
|
||||
.RI "\fBQwtSplineLocal\fP (\fBType\fP \fBtype\fP)"
|
||||
.br
|
||||
.RI "Constructor\&. "
|
||||
.ti -1c
|
||||
.RI "virtual \fB~QwtSplineLocal\fP ()"
|
||||
.br
|
||||
.RI "Destructor\&. "
|
||||
.ti -1c
|
||||
.RI "\fBType\fP \fBtype\fP () const"
|
||||
.br
|
||||
.ti -1c
|
||||
.RI "virtual uint \fBlocality\fP () const override"
|
||||
.br
|
||||
.ti -1c
|
||||
.RI "virtual QPainterPath \fBpainterPath\fP (const QPolygonF &) const override"
|
||||
.br
|
||||
.RI "Interpolate a curve with Bezier curves\&. "
|
||||
.ti -1c
|
||||
.RI "virtual \fBQVector\fP< QLineF > \fBbezierControlLines\fP (const QPolygonF &) const override"
|
||||
.br
|
||||
.RI "Interpolate a curve with Bezier curves\&. "
|
||||
.ti -1c
|
||||
.RI "virtual \fBQVector\fP< \fBQwtSplinePolynomial\fP > \fBpolynomials\fP (const QPolygonF &) const override"
|
||||
.br
|
||||
.RI "Calculate the interpolating polynomials for a non parametric spline\&. "
|
||||
.ti -1c
|
||||
.RI "virtual \fBQVector\fP< double > \fBslopes\fP (const QPolygonF &) const override"
|
||||
.br
|
||||
.RI "Find the first derivative at the control points\&. "
|
||||
.in -1c
|
||||
.SH "Detailed Description"
|
||||
.PP
|
||||
A spline with C1 continuity\&.
|
||||
|
||||
\fBQwtSplineLocal\fP offers several standard algorithms for interpolating a curve with polynomials having C1 continuity at the control points\&. All algorithms are local in a sense, that changing one control point only few polynomials\&.
|
||||
.PP
|
||||
Definition at line 24 of file qwt_spline_local\&.h\&.
|
||||
.SH "Member Enumeration Documentation"
|
||||
.PP
|
||||
.SS "enum \fBQwtSplineLocal::Type\fP"
|
||||
|
||||
.PP
|
||||
Spline interpolation type\&. All type of spline interpolations are lightweight algorithms calculating the slopes at a point by looking 1 or 2 points back and ahead\&.
|
||||
.PP
|
||||
\fBEnumerator\fP
|
||||
.in +1c
|
||||
.TP
|
||||
\fB\fICardinal \fP\fP
|
||||
A cardinal spline
|
||||
.PP
|
||||
The cardinal spline interpolation is a very cheap calculation with a locality of 1\&.
|
||||
.TP
|
||||
\fB\fIParabolicBlending \fP\fP
|
||||
Parabolic blending is a cheap calculation with a locality of 1\&. Sometimes it is also called Cubic Bessel interpolation\&.
|
||||
.TP
|
||||
\fB\fIAkima \fP\fP
|
||||
The algorithm of H\&.Akima is a calculation with a locality of 2\&.
|
||||
.TP
|
||||
\fB\fIPChip \fP\fP
|
||||
Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) is an algorithm that is popular because of being offered by MATLAB\&.
|
||||
.PP
|
||||
It preserves the shape of the data and respects monotonicity\&. It has a locality of 1\&.
|
||||
.PP
|
||||
Definition at line 34 of file qwt_spline_local\&.h\&.
|
||||
.SH "Constructor & Destructor Documentation"
|
||||
.PP
|
||||
.SS "QwtSplineLocal::QwtSplineLocal (\fBType\fP type)"
|
||||
|
||||
.PP
|
||||
Constructor\&.
|
||||
.PP
|
||||
\fBParameters\fP
|
||||
.RS 4
|
||||
\fItype\fP Spline type, specifying the type of interpolation
|
||||
.RE
|
||||
.PP
|
||||
\fBSee also\fP
|
||||
.RS 4
|
||||
\fBtype()\fP
|
||||
.RE
|
||||
.PP
|
||||
|
||||
.PP
|
||||
Definition at line 450 of file qwt_spline_local\&.cpp\&.
|
||||
.SH "Member Function Documentation"
|
||||
.PP
|
||||
.SS "\fBQVector\fP< QLineF > QwtSplineLocal::bezierControlLines (const QPolygonF & points) const\fC [override]\fP, \fC [virtual]\fP"
|
||||
|
||||
.PP
|
||||
Interpolate a curve with Bezier curves\&. Interpolates a polygon piecewise with cubic Bezier curves and returns the 2 control points of each curve as QLineF\&.
|
||||
.PP
|
||||
\fBParameters\fP
|
||||
.RS 4
|
||||
\fIpoints\fP Control points
|
||||
.RE
|
||||
.PP
|
||||
\fBReturns\fP
|
||||
.RS 4
|
||||
Control points of the interpolating Bezier curves
|
||||
.RE
|
||||
.PP
|
||||
|
||||
.PP
|
||||
Reimplemented from \fBQwtSplineC1\fP\&.
|
||||
.PP
|
||||
Definition at line 502 of file qwt_spline_local\&.cpp\&.
|
||||
.SS "uint QwtSplineLocal::locality () const\fC [override]\fP, \fC [virtual]\fP"
|
||||
The locality of an spline interpolation identifies how many adjacent polynomials are affected, when changing the position of one point\&.
|
||||
.PP
|
||||
The Cardinal, ParabolicBlending and PChip algorithms have a locality of 1, while the Akima interpolation has a locality of 2\&.
|
||||
.PP
|
||||
\fBReturns\fP
|
||||
.RS 4
|
||||
1 or 2\&.
|
||||
.RE
|
||||
.PP
|
||||
|
||||
.PP
|
||||
Reimplemented from \fBQwtSpline\fP\&.
|
||||
.PP
|
||||
Definition at line 552 of file qwt_spline_local\&.cpp\&.
|
||||
.SS "QPainterPath QwtSplineLocal::painterPath (const QPolygonF & points) const\fC [override]\fP, \fC [virtual]\fP"
|
||||
|
||||
.PP
|
||||
Interpolate a curve with Bezier curves\&. Interpolates a polygon piecewise with cubic Bezier curves and returns them as QPainterPath\&.
|
||||
.PP
|
||||
\fBParameters\fP
|
||||
.RS 4
|
||||
\fIpoints\fP Control points
|
||||
.RE
|
||||
.PP
|
||||
\fBReturns\fP
|
||||
.RS 4
|
||||
Painter path, that can be rendered by QPainter
|
||||
.RE
|
||||
.PP
|
||||
|
||||
.PP
|
||||
Reimplemented from \fBQwtSplineC1\fP\&.
|
||||
.PP
|
||||
Definition at line 482 of file qwt_spline_local\&.cpp\&.
|
||||
.SS "\fBQVector\fP< \fBQwtSplinePolynomial\fP > QwtSplineLocal::polynomials (const QPolygonF & points) const\fC [override]\fP, \fC [virtual]\fP"
|
||||
|
||||
.PP
|
||||
Calculate the interpolating polynomials for a non parametric spline\&.
|
||||
.PP
|
||||
\fBParameters\fP
|
||||
.RS 4
|
||||
\fIpoints\fP Control points
|
||||
.RE
|
||||
.PP
|
||||
\fBReturns\fP
|
||||
.RS 4
|
||||
Interpolating polynomials
|
||||
.RE
|
||||
.PP
|
||||
\fBNote\fP
|
||||
.RS 4
|
||||
The x coordinates need to be increasing or decreasing
|
||||
.PP
|
||||
The implementation simply calls \fBQwtSplineC1::polynomials()\fP, but is intended to be replaced by a one pass calculation some day\&.
|
||||
.RE
|
||||
.PP
|
||||
|
||||
.PP
|
||||
Reimplemented from \fBQwtSplineC1\fP\&.
|
||||
.PP
|
||||
Definition at line 537 of file qwt_spline_local\&.cpp\&.
|
||||
.SS "\fBQVector\fP< double > QwtSplineLocal::slopes (const QPolygonF & points) const\fC [override]\fP, \fC [virtual]\fP"
|
||||
|
||||
.PP
|
||||
Find the first derivative at the control points\&.
|
||||
.PP
|
||||
\fBParameters\fP
|
||||
.RS 4
|
||||
\fIpoints\fP Control nodes of the spline
|
||||
.RE
|
||||
.PP
|
||||
\fBReturns\fP
|
||||
.RS 4
|
||||
Vector with the values of the 2nd derivate at the control points
|
||||
.RE
|
||||
.PP
|
||||
\fBNote\fP
|
||||
.RS 4
|
||||
The x coordinates need to be increasing or decreasing
|
||||
.RE
|
||||
.PP
|
||||
|
||||
.PP
|
||||
Implements \fBQwtSplineC1\fP\&.
|
||||
.PP
|
||||
Definition at line 521 of file qwt_spline_local\&.cpp\&.
|
||||
.SS "\fBQwtSplineLocal::Type\fP QwtSplineLocal::type () const"
|
||||
|
||||
.PP
|
||||
\fBReturns\fP
|
||||
.RS 4
|
||||
Spline type, specifying the type of interpolation
|
||||
.RE
|
||||
.PP
|
||||
|
||||
.PP
|
||||
Definition at line 468 of file qwt_spline_local\&.cpp\&.
|
||||
|
||||
.SH "Author"
|
||||
.PP
|
||||
Generated automatically by Doxygen for Qwt User's Guide from the source code\&.
|
||||
Reference in New Issue
Block a user